บทที่ 4 Intro to quantum computing

Quantum Mechanics and Superposition

Investment Opportunities

Challenges and Limitations

พู้ช่วยศาสตราจารย์จุหาวุฒิ จันทรมาสิ

หลักสูตรวิทยาศาสตรบัณฑิต สาขาวิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยสวนดุสิต

Digital Circuits Quick Recap

Anatomy of a Compute Qubit

Quantum Gate Operation - Amplitude Amplitude 0 Phase phase

Quantum Gates:

- manipulate Amplitude θ and Phase Φ of the state vector
- take superpositions as inputs, rotate their probabilities, and produce another superposition as outputs

Quantum Gate Examples

Pauli-X Gate is a NOT operation. It will turn a spinup state to a spin-down and visa versa.

Y-gate rotates around the Y-axis. It is similar to the Xgate but different in phase.

Hadamard Gate sets the qubit into a superposition state of a 50/50 chance that it will end up as |0> or |1>.

T gate rotates a qubit $\Pi/4$ around the z-axis.

Quantum NOT Gate Example (Pauli-X Gate)

Hadamard Gate Example (Set to 50/50 State)

T Gate Example (Rotate $\pi/4$ around the Z-axis)

Quantum Circuits

Include Both Quantum Operators + Classical Computing

Number of input Qubits must match number of output Qubits

IBM Quantum Composer

Quantum Parallelism

QUBIT #1

Holds & operates on values of 0 and 1 simultaneously

Holds & operates on values of 00, 01, 10, 11 simultaneously

Holds & operates on values of 000, 001, 010, 011, 100, 101, 110, 111 simultaneously

How Much Faster is a Quantum Computer?

- In 2021, the world's largest quantum computer had 127 Qubits
- This machine was <u>158M</u> times faster than its classic counterpart
- Example Task Execution Times:
 - Classic Computer: 2,500 years
 - Quantum Computer: 1 minute

Classical Computing Problem Solving

 A classic computer needs to sequentially iterate through a problem until the correct result is found

Quantum Computing Problem Solving

 Quantum computing can provide a single or small number of answers with the highest probability of being correct, which narrows down the search for the correct solution

Interference Manipulation

- Another benefit that can be realized by quantum computing comes from manipulating interference
- Interference may be
 - constructive or
 - destructive
- Programmers of quantum algorithms (like Grover's and Shor's algorithms) endeavor to arrange qubits so that :
 - correct answers generate constructive interference
 - incorrect answers generate destructive interference
- Remember: Probability = Amplitude²

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$
Sums of the squares of probabilities must equal 1
$$\alpha^2 + \beta^2 = 1$$

What Do Quantum Computers Look Like?

